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Abstract. We present a simple albeit self-consistent approach to the spectral function of light quarks in
infinite quark matter. Relations between correlation functions and collision rates are used to calculate the
spectral function in an iterative procedure. The quark interactions are described by the SU(2) Nambu–
Jona-Lasinio model. Calculations were performed in the chirally restored phase at zero temperature.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 12.39.Fe Chiral Lagrangians
– 12.39.Ki Relativistic quark model

1 Introduction

It is well known that short-range correlations have influ-
ence on the properties of nuclear matter and finite nu-
clei; a substantial amount of high-momentum processes
is contained in the nucleon spectral function. There have
been many theoretical approaches trying to understand
the short-range correlations. Of particular interest are the
self-consistent calculations for the spectral function of nu-
cleons in nuclear matter from Lehr et al. [1]. The results
of their simple model are in good agreement with sophis-
ticated calculations from many-body theory. It is striking
that their model is very successful in describing the influ-
ence of short-range correlations on the properties of nu-
clear matter using a simple pointlike nucleon interaction
with a constant scattering amplitude.

Motivated by the success of this model we have taken
up the concept to investigate the properties of light quarks
in infinite quark matter [2]. It is our basic assumption
that the properties of the spectral function are domi-
nated by phase space effects and the overall strength of
the interaction just like in the case of the nucleons. The
detailed structure of the interaction should be relatively
unimportant as long as the relative symmetries are re-
spected. We use relations between the spectral function
and the collisional self-energies to construct a simple al-
beit self-consistent model. The spectral function can then
be calculated in an iterative process beyond the quasipar-
ticle approximation. The quark interactions are described
by the Nambu–Jona-Lasinio (NJL) model [3]. It has the
same symmetries as QCD and describes an effective point-
like interaction.

As a first step the model has been applied to the sim-
plest system, namely the chirally restored phase at zero
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temperature. Mean-field effects were neglected, diquark
condensates that arise in the color superconducting phase
were not included. For the collisional self-energies only
the lowest-order contributions, the Born diagrams, were
considered. In the numerical calculations the influence of
the coupling strength and the chemical potential on the
properties of the spectral function was investigated.

2 The model

In this section we will briefly review our model. For more
details we refer to [2]. The underlying Green’s function
formalism is discussed in much detail in [4,5]. Note that
current quark masses are neglected throughout this work
and only systems in thermal equilibrium are considered.
We use the Nambu–Jona-Lasinio model to describe the
quark interactions in our approach. It is an effective inter-
action model that was designed to resemble the symme-
tries of QCD. The SU(2) Lagrangian is given by

LNJL = ψ̄i∂/ψ +G[(ψ̄ψ)2 + (ψ̄iγ5τψ)2], (1)

where G is the coupling strength, independent of energy
and momentum, and the τi are isospin Pauli matrices.
Due to the pointlike interaction this model is nonrenor-
malizable and a three-momentum cutoff Λ is introduced.
Currently we do not consider any extensions to the La-
grangian that lead to color superconductivity, cf. [2].

The correlation functions

ig>(1, 1′) = 〈ψ(1)ψ̄(1′)〉,
−ig<(1, 1′) = 〈ψ̄(1′)ψ(1)〉

are the fundamental elements of our model. In thermal
equilibrium they are related to the spectral function A
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Fig. 1. Examples for diagrams that are resummed in our cal-
culation. The lines correspond to free propagators.

via the thermal Fermi distribution nF(p0):

−ig<(p) = A(p)nF(p0), (2)
ig>(p) = A(p)[1− nF(p0)]. (3)

Note that the Green’s functions and the spectral func-
tion are matrices in spinor space. The single-particle self-
energy can be decomposed into a mean-field part Σmf and
the collisional self-energies Σ≷. Thus, the retarded self-
energy Σret is given by

Σret(1, 1′) = Σmf(1, 1′)
+Θ(t1 − t1′)

[
Σ>(1, 1′)− Σ<(1, 1′)

]
. (4)

The time local mean-field self-energy corresponds to
the motion of particles in a potential. It is responsible for
the dynamical generation of the constituent-quark masses.
The collisional self-energies contain the effects of particle
decays and collisions in the medium. In lowest order they
are given by the Born diagrams (cf. left diagram in fig. 1).
One finds

±iΣ≷(p) ∼
∫∫∫

· · ·G2g≶(p2)g≷(p3)g≷(p4), (5)

where g> and g< are full propagators and the integrals
run over p2, p2, and p4. Equations (5) look like total colli-
sion rates and can be used to determine the width of the
spectral function:

Γ (p) = −2ImΣret(p) = i[Σ>(p)− Σ<(p)]. (6)

The real part of Σret is related to Γ by a dispersion re-
lation. If the width is known over the full energy range
ReΣret can be calculated dispersively. Using Γ and ReΣret

the spectral function can be explicitly written as

A(p) = −2Imgret(p) = −2Im 1
	p − ReΣret + iΓ/2

. (7)

Equations (2),(3), and (5)-(7) form a set of equations de-
scribing a self-consistency problem. A direct solution is not
easily possible. It is possible, however, to solve the problem
iteratively by starting from an initial guess for one of the
quantities. In this way we can find a solution for the spec-
tral function. The effect of self-consistency can be nicely il-
lustrated in the language of Feynman diagrams. Using full
propagators g≷ that depend themselves on Σ≷ in eqs. (5)
means that we sum nonperturbatively over a whole class
of diagrams. Some examples are shown in fig. 1.

Finally, we have to discuss the matrix structure of the
spectral function in spinor space. To find the most general
form A can be decomposed in terms of the 16 independent
products of the γ matrices. Demanding invariance under

parity and time reversal symmetry we find for the rest
frame of the medium (in thermal equilibrium) [6]:

A(p) = ρs(p0,p
2) + ρ0(p0,p

2)γ0 + ρv(p0,p
2)p̂ · γ, (8)

where p̂ is a unit vector in the momentum direction. Note
that the density of states is given by ρ0 alone and that ρs

has to be zero in the chirally restored phase. It follows from
eqs. (2)-(7) that Γ and Σ≷ must have the same structure
as ρ.

Currently we apply two simplifications to the model.
First, we restore chiral symmetry “manually” by setting
Σmf to zero. This can be done for any density and tem-
perature since m = 0 is always a solution of the equation
for the constituent-quark mass [3]. However, one has to
be aware that this might not be the thermodynamically
favored phase when also a finite solution for m exists.
Second, we neglect the real part of Σret due to techni-
cal reasons [2]. For nuclear matter this was a reasonable
approximation [1]. To make sure that the effects of this vi-
olation of analyticity are not significant we have checked
that ReΣret is small compared to 	p, cf. eq.(7).

3 Results

All our calculations were performed at zero temperature
and in the chirally restored phase. The calculations were
initialized with a constant width, Γ0 = 1MeV and Γv = 0.
Self-consistency was achieved after two iterations. First,
we chose the quark matter density such that it is compara-
ble to regular nuclear matter, ρqm = 3·ρnm = 3·0.17 fm−3.
This yields a Fermi energy of ωF = 0.268GeV. The cutoff
Λ and the coupling constant G of the NJL model were
chosen so that the model reproduces the known values [3]
for the quark condensate and the pion coupling constant
fπ in vacuum. To investigate the influence of the coupling
on the spectral function we did also calculations with two
times and four times larger coupling strengths. In reality
quark matter with a chemical potential of ωF = 0.268GeV
would not be in the chirally restored phase. Therefore
we made additional calculations with a higher density of
ρqm = 1.53 fm−3, corresponding to ωF = 0.387GeV. This
chemical potential is well beyond the chiral phase transi-
tion in the NJL model [3].

Figure 2 shows our results for the spectral function and
its width at several momenta and coupling strengths us-
ing ωF = 0.268GeV. Due to the pointlike interaction the
width seems to increase explosively for large |p0|. At even
higher |p0|, however, the opening of phase space is sup-
pressed by the NJL cutoff and the width decreases again.
Physically the most interesting area lies in the energy
range 0 < p0 < ωF since that is the region of the pop-
ulated quark states. All states above the Fermi energy as
well as the anti-quark states at negative p0 are unoccupied
(no holes in the Dirac sea). The structure of the spectral
function is dominated by the on-shell peaks of the quarks
and anti-quarks at p0 = |p| and p0 = −|p|. The peaks get
broader when the coupling is increased. Strength is dis-
tributed away from the peaks to the off-shell regions, the
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Fig. 2. The width Γ0 and the spectral function ρ0 of quarks
at different momenta. Solid lines correspond to the usual NJL
coupling strength, dashed lines to a coupling twice as large.
Dotted lines have been obtained with a coupling four times
larger than the usual value.
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Fig. 3. The width Γ0 and the spectral function ρ0 of quarks at
different momenta. Solid lines correspond to ωF = 0.268GeV,
dashed lines to ωF = 0.387GeV.
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Fig. 4. (a) Quark momentum distribution in quark matter
for ωF = 0.268GeV and three different couplings (see fig. 2 for
details). (b) Momentum distribution for two different chemical
potentials (see fig. 3 for details).

width of the peaks increases from 0.1–1 MeV to 10MeV.
The width seems to scale with the coupling strength (re-
spectively G2, cf. eqs. (5)) while the general shape remains
unchanged.

Figure 3 shows the width and the spectral function
for the two chemical potentials ωF = 0.268GeV and
ωF = 0.387GeV using the regular coupling strength. The
effect of the higher density is comparable to increasing the
coupling. The width approximately scales with the chem-
ical potential while the shape remains unchanged. This
leads again to a broadening of the peaks of the spectral
function.

+ + + . . . −→
Fig. 5. Series of diagrams corresponding to dynamically gen-
erated mesons.

In the momentum distribution of nucleons in nuclear
matter a depletion of the occupation probabilites by about
10% is seen [1]. The resulting high-energy tail is taken
as a universal sign of short-range correlations. We show
the momentum distribution of the quarks for the different
coupling strengths in fig. 4(a). At the lowest coupling a
depletion of only 0.1% is found. For the coupling twice
as large the short-range correlations increase but still the
depletion effect is below 1%. Only for the largest cou-
plings we find a high momentum tail of a few percent,
comparable to the case of nucleons. In fig. 4(b) it can be
seen again that the effect of the larger chemical poten-
tial is similar to an increased coupling. The depletion for
ωF = 0.387GeV grows by almost one order of magnitude
compared to ωF = 0.268GeV.

4 Summary and outlook

Based on a successful model for nuclear matter we have
presented a simple but fully self-consistent approach to
the spectral function of quarks in quark matter. It uses
a pointlike interaction and goes beyond the quasiparticle
approximation. The numerical results indicate that the
influence of short-range correlations is rather small com-
pared to nuclear matter. This finding might be an artifact
of the present model, the NJL model with vacuum para-
meters in the Born approximation. Furthermore we have
not considered broken symmetries. However, the calcula-
tions have shown that the model is technically feasible and
suitable for further development.

At present, the model is extended in two ways. First,
a more realistic phase with broken symmetries —the chi-
rally broken phase— is considered. In this phase large
constituent-quark masses must be taken into account and
the analytic structure of the spectral function (8) is more
complicated. Second, a new class of diagrams is incorpo-
rated into the collisional self-energies (5). This series of
diagrams is shown in fig. 5. The lowest-order contribution
is again the Born diagram. The full series can be inter-
preted as a dynamically generated meson that couples to
the quarks [3,7]. First estimates show that this extension
will increase the effective quark coupling and should lead
to significantly higher widths of the spectral function. In
addition, it will be possible to investigate the properties
of the self-consistently calculated pions and sigmas.
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